tg-me.com/ds_interview_lib/837
Last Update:
Почему RMSE и MAE могут давать разную оценку качества модели
RMSE (Root Mean Squared Error) и MAE (Mean Absolute Error) — это две популярные метрики регрессии, но они ведут себя по-разному при наличии выбросов.
🔹 MAE — это средняя абсолютная ошибка, измеряет среднее отклонение предсказаний от истинных значений. Она линейно реагирует на ошибки, то есть один большой выброс не окажет значительного влияния.
🔹 RMSE — это корень из среднеквадратичной ошибки, которая квадратично увеличивает вклад больших ошибок. Это значит, что RMSE сильнее наказывает за крупные выбросы, чем MAE.
📊 Пример:
Если у вас есть предсказания: [2, 3, 4, 5, 100] при истинных значениях [2, 3, 4, 5, 6],
то MAE ≈ 18, а RMSE ≈ 40. RMSE выросло сильнее из-за большого выброса в 100.
BY Библиотека собеса по Data Science | вопросы с собеседований

Share with your friend now:
tg-me.com/ds_interview_lib/837